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The seasonal evolution of snow cover has significant impacts on the hydrological
cycle and microclimate in mountainous regions. However, snow processes also
play a crucial role in triggering alpine mass movements and flooding, posing risks
to people and infrastructure. To mitigate these risks, many countries use
operational forecast systems for snow distribution and melt. This paper
presents the Swiss Operational Snow-hydrological (OSHD) model system,
developed to provide daily analysis and forecasts on snow cover dynamics
throughout Switzerland. The OSHD system is a sophisticated snow
hydrological model designed specifically for the high-alpine terrain of the
Swiss Alps. It leverages exceptional station data and high-resolution
meteorological forcing data, as well as various reanalysis products to combine
snow modeling with advanced data assimilation and meteorological downscaling
methods. The system offers models of varying complexity, each tailored to
specific modeling strategies and applications. For snowmelt runoff forecasting,
monitoring snow water resources, and research-grade purposes, the OSHD
system employs physics-based modeling chains. For snow climatological
assessments, a conceptual model chain is available. We are pleased to present
two comprehensive datasets from the conceptual and physics-based models that
cover the entirety of Switzerland. The first dataset comprises a snow water
equivalent climatology spanning 1998–2022, with a spatial resolution of 1 km.
The second dataset includes snow distribution and snow melt data spanning
2016–2022 at a high spatial resolution of 250m. To meet the needs of a multi-
purpose snow hydrological model framework, the OSHD system employs various
strategies for process representation and sub-grid parameterizations at the snow-
canopy-atmosphere interface, particularly in complex terrain. Recent and
ongoing model developments are aimed at accounting for complex forest
snow processes, representing slope and ridge-scale precipitation and snow
redistribution processes, as well as improving probabilistic snow forecasts and
data assimilation procedures based on remote sensing products.
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1 Introduction

The distribution of snow in space and time is of paramount
importance to the Earth system, as it plays a fundamental role in
driving the hydrological cycle (Viviroli et al., 2007; Clark et al., 2011;
Vionnet et al., 2019) and influencing the climate of cold regions
(Beniston et al., 2018). In mountainous regions, the timing and
intensity of snowmelt can have significant impacts on extreme
events such as rain-on-snow flooding (e.g., Würzer and Jonas,
2018; Li et al., 2019) and droughts (e.g., Barnett et al., 2005;
Dierauer et al., 2018).

The hydrological response of mountain catchments is driven by
a range of snow accumulation and ablation processes (Freudiger
et al., 2017) that operate at multiple temporal and spatial scales
(Blöschl, 1999; Clark et al., 2011). Accurately estimating snow
accumulation and ablation is critical for reducing uncertainties in
snow-hydrological modelling (Raleigh et al., 2015; Vionnet et al.,
2022) and presents a challenge for snow models used in avalanche
hazard forecasting (Morin et al., 2020) and hydrological predictions
(Brauchli et al., 2017). The accumulation of snow in complex terrain
is mainly governed by atmospheric processes, which can range from
orographic precipitation enhancement at large spatial scales to
preferential deposition and redistribution of snow at finer scales
(Gerber et al., 2019; Vionnet et al., 2021). During the ablation
season, the melt rates vary spatially due to differences in solar
irradiance resulting from variations in aspect, shading, and
albedo (e.g., Marks and Dozier, 1992; Dumont et al., 2011;
Schirmer and Pomeroy, 2020), turbulent fluxes of sensible and
latent heat (e.g., Winstral and Marks, 2014; Garvelmann et al.,
2015; Mott et al., 2019), and heat advection processes during
patchy snow cover conditions (e.g., Essery et al., 2006; Pohl et al.,
2006; Mott et al., 2016; Schlögl et al., 2016; Harder et al., 2017; Mott
et al., 2017).

Furthermore, the complex interactions between the snow and
canopy, such as attenuation of shortwave radiation and
enhancement of longwave radiation (Hardy et al., 2004; Sicart
et al., 2006; Pomeroy et al., 2009; Musselman and Pomeroy,
2017; Webster et al., 2017; Malle et al., 2019), wind attenuation
(Mahat et al., 2013; Roth and Nolin, 2017), interception of snowfall
(Hedstrom and Pomeroy, 1998; Moeser et al., 2015; Roth and Nolin,
2019; Helbig et al., 2020), and subsequent unloading or sublimation
of canopy snow (Pomeroy et al., 1998; Mahat and Tarboton, 2014),
pose significant challenges for hydrological and land surface models.
These challenges make snow-hydrological predictions even more
complex for forested landscapes (Essery et al., 2009; Rutter et al.,
2009), and accurate representation of snow accumulation and
ablation dynamics in both open and forested areas is crucial for
reliable snow-hydrological predictions.

Temperature-index models have been widely adopted in
modeling snow and meltwater in mountain catchments due to
their low computational costs and ability to run on simple,
widely available input data (Hock, 1999; Jost et al., 2012; Tobin
et al., 2013; Farinotti et al., 2012; Girons Lopez et al., 2020; Parajuli
et al., 2020). However, such models fail to capture spatial differences
in snow melt rates and runoff among slopes with different aspects,
which are critical in representing the seasonal runoff dynamics of
alpine catchments (Dornes et al., 2008a; Dornes et al., 2008b).
DeBeer and Pomeroy (2017) contend that temperature-index

model approaches may yield acceptable results in certain
topographic settings and climatic conditions, but the spatial
variability in the snowpack energy balance must be considered,
especially in cold regions, windy conditions, and increasingly
complex terrain. Therefore, distributed energy- and mass-balance
snow cover models are increasingly being applied in snow
hydrological simulations (Bavay et al., 2013; Warscher et al.,
2013; Gallice et al., 2016; Painter et al., 2016; Brauchli et al.,
2017; Magnusson et al., 2017; Hedrick et al., 2018; Shakoor et al.,
2018; Carletti et al., 2022). In particular, the consideration of
temporally and spatially varying surface energy fluxes is crucial
for snow-hydrological simulations in complex terrain, extreme
weather events, and glacierized catchments, where the presence
of local wind systems enhances the importance of turbulent heat
exchange for the energy balance of snow and ice surfaces (Shea and
Moore, 2010; Sauter and Galos, 2016; Freudiger et al., 2017; Mott
et al., 2020).

The frequency and intensity of extreme weather events are
projected to increase at high elevations, leading to potential
flooding from heavy rainfall events in spring or rain-on-snow
events in winter (Surfleet and Tullos, 2013; Beniston and Stoffel,
2016; Morán-Tejeda et al., 2016; Musselman et al., 2018). However,
accurately simulating the complex snow-atmosphere interactions
during rain-on-snow events with temperature-based solutions is
challenging, as turbulent heat fluxes play a significant role in high
snow melt intensities (Dyer and Mote, 2002; Dadic et al., 2013;
Garvelmann et al., 2014). Therefore, it is increasingly important to
rely on physically-based snow-hydrological models to accurately
predict the effects of extreme weather events on snowmelt and
runoff.

Operational physical-based snow cover models have
limitations due to their high computational demands and
dependence on spatially distributed meteorological input
variables obtained from regional weather models in high
temporal and spatial resolution (Anderson, 1976; Schlögl
et al., 2016; Hock et al., 2017). While these regional weather
models can resolve coarser processes such as orographic
enhancement, they fail to capture ridge and slope-scale
processes (Dujardin and Lehning, 2022). To overcome this
limitation, downscaling techniques are needed to bridge the
scale gap between forcing data and the spatial resolution at
which snow models are run (Kruyt et al., 2022). The choice of
downscaling methods for different meteorological variables is
especially important in modeling mountain snow cover
dynamics, as several studies have shown that resolving terrain
effects on wind, radiation, and precipitation is crucial in
simulating seasonal snow cover dynamics on the mountain
slope scale (Schneiderbauer and Prokop, 2011; Musselman
et al., 2015; Vionnet et al., 2017; Mott and Lehning, 2010;
Reynolds et al., 2020; Carletti et al., 2022). Therefore,
downscaling techniques need to be carefully chosen to
accurately represent the impact of topography on snow
accumulation and ablation, especially in complex mountainous
regions.

Various modeling strategies have been developed to account for
snow accumulation on mountain slopes at different resolutions,
ranging from hundreds of meters to a few meters (e.g., Winstral and
Marks, 2002; Musselman et al., 2015). Some models use
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parameterizations to adjust snowfall based on topographic
parameters (Winstral and Marks, 2002; Helbig et al., 2015), while
others explicitly represent snowfall and redistribution processes
(Essery et al., 1999; Durand et al., 2005; Pomeroy et al., 2007;
Liston et al., 2007; Lehning et al., 2008; Sauter et al., 2013;
Vionnet et al., 2014; Comola et al., 2019; Marsh et al., 2020;
Vionnet et al., 2021). However, explicit representation of wind-
induced snow accumulation processes can be computationally
expensive and not practical for operational snow-hydrological
models, which need to run multiple times a day on large model
domains with short computation times. Therefore, a balance needs
to be struck between physics-based process representation and
model efficiency. To address this, sub-grid parameterizations
have been proposed to represent snow depth variability at the
mountain ridge and slope scale for snow cover models operating
at kilometer scales. These approaches have been applied in various
applications to improve the representation of snow depth variability
(Liston, 2004; Lehning et al., 2011; Helbig and van Herwijnen, 2017;
He and Ohara, 2019).

Data assimilation is a valuable tool for improving the accuracy of
snow cover predictions in operational snow cover models. It allows
for the integration of observational snow data into the model to
correct for biases and errors in the observed precipitation field,
which can significantly enhance the accuracy of snow model
predictions (Magnusson et al., 2014; Griessinger et al., 2016;
Winstral et al., 2019). One of the key advantages of data
assimilation is its ability to combine model predictions with
observational data, thereby reducing uncertainties and improving
the overall reliability of the model output. This approach enables the
model to account for the limitations of the observational network
and to estimate the snow cover conditions in areas with limited or no
observations.

We would like to introduce a model framework that has been
developed for operational snow hydrological modeling in
Switzerland. This framework provides input data for national and
regional flood and avalanche forecasting and is also used for various
research applications. It is a prime example of a snow hydrological
model that combines downscaling strategies, process representation
and data assimilation to optimize the accuracy of model predictions
while maintaining computational efficiency.

The framework comprises models of different complexities that
are dedicated to different modeling strategies and purposes. In this
context, we will present the strategies for data assimilation,
downscaling techniques, and sub-grid parametrizations of
relevant processes that are used to achieve an optimal balance
between process representation and computational requirements
in an operational snow hydrological model setting.

The model framework is used operationally to forecast snow
cover dynamics in Switzerland. However, the individual model
components are also utilized for many different research
applications (e.g., Griessinger et al., 2016; Arnoux et al., 2021;
Schirmer et al., 2022). This highlights the versatility of the
framework and the importance of developing models that can
meet multiple requirements simultaneously. It is noteworthy
that the success of this model framework is attributed to its
ability to incorporate multiple techniques into one cohesive
framework, which results in improved model accuracy and
efficiency.

2 The operational snow-hydrological
model framework

The Swiss Operational Snow-Hydrological Service (OSHD) was
originally established to meet the demand for Swiss-wide daily
forecasts on snow distribution and snow melt, which are essential
for national flood forecasting in Switzerland. In addition, the OSHD
has been at the forefront of model development, and its framework
and resulting datasets have been used for various research
applications. Overall, the OSHD has become an invaluable
resource for flood forecasting in Switzerland and has contributed
significantly to scientific knowledge in the field of snow hydrology.

The development of a snow hydrological model system in
Switzerland was made possible by several key factors, including
the high-alpine terrain of the Swiss Alps, the availability of
exceptional station data, especially the high density of high-
quality snow stations at mid to high elevations, and access to
high-resolution meteorological input data from the Swiss regional
weather model and various reanalysis products provided by the
Federal Office of Meteorology and Climatology MeteoSwiss. Based
on these prerequisites a OSHD modular model framework was
developed that combines snow modeling with data assimilation
techniques and downscaling methods.

This section will provide a comprehensive overview of the
OSHD model framework, including its individual aspects. We
will begin by introducing the physics-based OSHD model chain
(Section 2.1), which represents the benchmark for this publication
and has undergone several years of development to reach its latest
stage. Next, we will provide detailed information on the
representation and parameterizations for snowpack processes
(Section 2.1.1), snow cover fraction (Section 2.1.2), and forest
snow processes (Section 2.1.3). Additionally, we will describe the
climatological model chain (Section 2.2) in detail to provide a
comprehensive understanding of the OSHD model framework.

2.1 The physics-based OSHD model chain
for seasonal snow cover modeling

The physics-based FSM2oshd model (https://github.com/oshd-
slf/FSM2oshd) solves the complete mass and energy balance of the
snowpack for open and forested areas (Mazzotti et al., 2020a;
Mazzotti et al., 2020b) at an hourly temporal resolution
(Figure 1, FSM2oshd). FSM2oshd was originally based on the
FSM2 snow cover model (Flexible snow model, https://github.
com/RichardEssery/FSM2), with adapted snowpack process
parameterizations and new model components for snow cover
fraction (Helbig et al., 2021a) and for forest processes (Mazzotti
et al., 2021; Mazzotti et al., 2023; Webster et al., 2023). In its
operational setting the physics based model chain is run at a
horizontal resolution of 250 m, but is also applied at higher
resolutions (up to 25 m) for research purposes. The current
physics-based OSHD model chain was initiated by Magnusson
et al. (2015) who built a Swiss snow model framework suitable
for predicting daily SWE and snowmelt using the first multi-model
framework of physically based energy-balance models, JULES
Investigation model (JIM), from Essery et al. (2013). The
spatialized version of JIM was set up to run with downscaled
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FIGURE 1
General OSHD model framework including data assimilation (orange boxes) for solid precipitation (P_solid), snow depth (HS) and air temperature
(TA) and meteorological input from regional weather and nowcasting models such as relative humidity (RH), short- and longwave radiation (SWR, LWR),
precipitation and wind. Input sources are shown for the physics-based multi-layer snow model (FSM2oshd, FSM2-HN) combined with Bias-Detecting
Ensemble (BDE) and the conceptual models based on temperature index models (TICL, ETI) and the Ensemble Kalman filter (EnKF).

FIGURE 2
Conceptual sketch of a FSM2oshd model grid cell split into open and forest fractions (left) and forest datasets used to characterize the canopy in the
forest fraction (right), including forest mask (A), the forest ecoregions map (B), and examples of canopy height model (C) and forest mix rates (D) for
corresponding true color images for broadleaf (left examples) and needleleaf (right examples) stands.
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numerical weather prediction data (NWP) and became the first
operational OSHD version.

The performance of JIMoshd was evaluated in a study by
Griessinger et al. (2019), who ran the latest version of the model
at a spatial resolution of 250 m and temporal resolution of 1 h. The
input was then fed into hydrological StreamFlow model simulations
for 25 catchments in Switzerland. The study found that daily
discharge simulations using StreamFlow were more accurate
when JIMoshd simulations were updated with snow model mass
and energy fluxes using snow observations with optimal
interpolation (OI; Magnusson et al., 2014) or the bias-detecting
ensemble approach (BDE; Winstral et al., 2019). In another
evaluation, JIMoshd simulated snow cover evolution at a spatial

resolution of 1 km and showed good seasonal agreement with
various spatial snow cover data. This ranged from airborne-
acquired fine-scale snow depth data to satellite and terrestrial
imagery for Switzerland (Helbig et al., 2021b).

Essery (2015) developed the initial version of the Factorial Snow
Model (FSM) to provide a more organized approach to the
development of the snow model suite JIM. To enhance the
model’s physics, particularly adding the representation of forest
snow processes (for more details see Section 2.1.3) and output
options, Essery (2015) introduced the Flexible Snow Model
FSM2. The FSMoshd, originally based on FSM2, is capable of
running on both a list of points and a regular grid
simultaneously. Grid cells are divided into separate tiles,

FIGURE 3
Main OSHD products (A) snow depth (HS), (B) snow water equivalent (SWE, (C) runoff from snowmelt (ROS) and (D) snow state, obtained from the
physics-based model chain for a rain-on-snow event on 28 January 2021 (after a rain-on-snow event).
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including forest-covered, open, and glacierized fractions (Figure 2,
left), with fractions covered by large bodies of water where snow
does not accumulate being excluded. The states and fluxes of each
tile are computed as weighted averages of the respective states and
fluxes of the grid cell. FSM2oshd includes local canopy cover
fraction, hemispherical sky view fraction, wind attenuation,
spatial patterns of shortwave and longwave radiation transfer
through the canopy, and preferential deposition of snow in
canopy gaps for the forest tiles, which have been improved by
Mazzotti et al. (2020a), Mazzotti et al. (2020b). Station locations are
linked to simulations at the point scale to assimilate local
observations into the model (see Section 3.1).

The FSM2oshd model, which is based on physics, is currently
being used for seasonal runs of recent water years (since WY
2016) to analyze and predict the spatio-temporal dynamics of
snow water equivalent (SWE), snow depth (HS), snow melt

runoff (SMR), and snow state (based on liquid water content)
on a daily and hourly basis (Figure 3). Additionally, a new snow
height model, FSM2oshd-HN, has been implemented to
explicitly model the height of new snow over defined time
frames, taking into account snowpack processes such as
melting and compaction (Figure 4). The HN model simulates
a HN board, where snow accumulates and settles over a specific
time period. At the beginning of the accumulation period, the
bottom boundary condition of the snowpack is initialized based
on snow surface temperatures at the initialization times. In
forecast mode, the HN model runs for lead times of 12, 24,
48, and 72 h, driven by COSMO forecasts (Figure 4). Due to the
settling of the snowpack, the HN may be smaller after 48 h than
after 24 h, despite continued snowfall. Furthermore, the HN
model is run in the hindcast, using the data assimilation
scheme described in Sect three. To allow for an optimal

FIGURE 4
Maps of forecasted new snow depths for lead times of 12 (A), 24 (B), 48 (C) and 72 (D) h (8 December 2021).
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transition between hindcast and forecast data, precipitation is
obtained from the nowcasting product INCA (Integrated
Nowcasting through Comprehensive Analysis) (Meteoswiss,
2020) to drive the FSM2oshd-HN model. All other
meteorological variables are forced by the COSMO analysis or
forecast models. Within the operational model framework, the
HN model is updated whenever new forecast and analysis data
from COSMO becomes available.

The physics-based OSHD model chain has a wide range of
applications, including operational use as well as in various
research projects. These projects aim to study high-resolution

snow melt processes in alpine terrain (Griessinger et al., 2019)
and forested areas (Mazzotti et al., 2023), and to project future
snow water resources and rain-on-snow events (e.g., Arnoux
et al., 2021; Schirmer et al., 2022). The advantage of using a
physics-based model is that it allows for more precise predictions
of snow water inputs during snow melt events, particularly those
driven by turbulent heat fluxes such as rain-on-snow situations.
Additionally, the model can resolve radiation differences between
slopes, which significantly increases the spatial variability of
snow melt in the spring season (see Figure 5). Compared to
temperature-index based models, which typically predict much

FIGURE 5
Model output of the physics-based OSHD model chain after a rain-on-snow event (A,C,E) and for a spring snowmelt event (B,D,F). Model results
present runoff from snowmelt (A,B), total precipitation minus total runoff where positive values indicate that precipitation is stored as snow and negative
values indicate that precipitation contributes to total runoff (C,D) and fraction of snow covered areas fSCA (E,F).
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lower snow melt during rain-on-snow events (as shown in
Figure 6), the physics-based model chain appears to better
capture snow melt processes during complex meteorological
conditions.

The physics-based model chain used for snowpack simulation
relies heavily on precise and high-resolution information about the
local meteorological conditions that affect the mass and energy
balance of the snowpack, both spatially and temporally. For
instance, the FSM2oshd model requires hourly data on various
parameters such as air temperature, air pressure, relative
humidity, total precipitation, wind speed, shortwave and
longwave radiation, for each grid cell (as shown in Figure 1).
Although such detailed information can be obtained by
downscaling the high-resolution (1–2 km) COSMO forcings, it is
important to note that these forcings may still contain errors
inherited from the atmospheric models. This is especially true for
mountainous regions, where NWPmodels often lack assimilation of
surface observations.

To minimize errors in the simulation, snow data assimilation
can be used to improve the accuracy of solid precipitation by
correcting it before running the snowpack model (front-end) or
during the execution of FSMoshd (back-end), utilizing the wealth of
snow depth and 2 m air temperature data available in
Switzerland and neighboring countries. The procedure for solid
precipitation data assimilation is detailed in Section 3 (as shown in
Figure 1).

2.1.1 Snowpack process parameterizations
A suitable combination of parameterizations is chosen in

FSM2oshd for predicting snow water equivalent and snow melt
based on the study of Magnusson et al. (2015) and recent results

presented by Mazzotti et al. (2020a), Mazzotti et al. (2020b). For
further optimization, available FSM2 parameterizations were either
adapted to our specific needs, or new parameterizations were
implemented as outlined below.

We use or adapted the following choice of snowpack process
parameterizations in FSM2oshd which were originally implemented
in FSM2:

• We model the thermal conductivity of the snowpack using
the methods of Douville et al. (1995) as originally implemented
in FSM2.

• We compute the turbulent exchange of heat and moisture
between the snow and atmosphere using the original
implementation of the Richardson parameterization (FSM2)
following Louis (1979). However, we have made an important
modification to this parameterization by introducing a maximum
threshold of 0.2 for the bulk Richardson number. This is crucial to
prevent the stability-induced shutdown of turbulent fluxes and the
resulting unrealistic low surface temperatures that can occur during
calm wind conditions (Martin and Lejeune, 1998; Vionnet et al.,
2012; Lafaysse et al., 2017). Our careful adaptation of the Richardson
parameterization ensures that our model produces highly accurate
results that are consistent with real-world observations.

We have implemented the following choices of snowpack
process parameterizations in FSM2oshd:

• Snow compaction: we have incorporated a modified
version of the physically-based method from the Crocus
snowpack model (Vionnet et al., 2012) into the FSM2oshd
model. The purpose of this modification is to simulate the

FIGURE 6
Runoff from snowmelt for a rain-on-snow event predicted by the physics-based (A) and the conceptual (B) model chain.
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increase in snow density for each snow layer resulting from the
weight of overlying snow and the presence of liquid water. Our
adaptation of the method takes into account the effects of liquid
water on the snowpack, while keeping the factor that accounts for
grain metamorphosis constant. This approach ensures that the
simulation accurately reflects the effects of both overlying snow
and liquid water on the snowpack density.

• We have incorporated a fine-tuned version of the latest new
snow densitymethod used in the Crocus snowpack model (Vionnet
et al., 2012) into our FSM2oshd software. This method takes into
account air temperature and wind speed to accurately simulate the
density of newly fallen snow. We carefully calibrated this function
specifically for FSM2oshd by conducting an assessment against
measurements of fresh snow that had settled over 24 h, while
also considering the elevation.

• We implemented a parameterization for the decay of snow
albedo based on the empirical method following Douville et al.
(1995). This method was tuned for FSM2oshd with an elevation
dependency of the albedo for fresh snow, through an assessment
against measured snow depletion rates in springtime.

• We model snow hydraulics by implementing a bucket
approach for routing liquid water through the snowpack
following the methods of Boone and Etchevers (2001).

2.1.2 Snow cover fraction parameterizations
The spatial variability of snow cover varies significantly

throughout a winter season, making it essential to consider the
fraction of a grid, that is, covered by snow when modeling snow (as
depicted in Figures 5E, F). A seasonal and scale-independent
algorithm for the fraction of snow-covered area (fSCA) has been
developed for open areas by Helbig et al. (2015); Helbig et al.
(2021a); Helbig et al. (2021b). This algorithm tracks the history
of snow depth (HS) and snowwater equivalent (SWE) and takes into
account the alternating accumulation and ablation phases (Helbig
et al., 2021b).

The algorithm utilizes a subgrid parameterization of the spatial
snow depth variability at the peak of winter based on the mean snow
depth, mean-squared slope, and the subgrid correlation length of
characteristic topographic features (Helbig et al., 2015). The subgrid
parameterization was re-evaluated with high-resolution spatial snow
depth data sets from seven independent geographic regions acquired
at the peak of winter and demonstrated good performance but with
scale-dependent results (Helbig et al., 2021a).

To address this, Helbig et al. (2021a) introduced scale-
dependent parameters in the peak of winter parameterization of
Helbig et al. (2015) to account for the maximum spatial snow depth
variability. This adjustment allows the hyperbolic tangent fSCA
parameterization to be applied reliably for grid cell sizes ranging
from 200 m to 5 km.

The current approach for estimating the fraction of snow-
covered areas in forested regions uses the simple hyperbolic
tangent model, which was first implemented in FSM2 (Essery,
2015). Although this approach works reasonably well, it does not
take into account the complex structure of forests, and therefore
there is a need for a more refined parametrization method. To
address this limitation, we plan to enhance the model in the future
by developing a fSCA parametrization approach that explicitly
accounts for forest structure.

2.1.3 Forest snow process representations
Simulations of the forest-covered grid cell fraction with

FSM2oshd include all processes by which the presence of a forest
canopy affects mass and energy exchange between the atmosphere
and the sub-canopy snowpack: Interception of snowfall in the
canopy and its subsequent sublimation to the atmosphere or
unloading to the ground, transmission of shortwave radiation
through and enhancement of longwave radiation by the canopy,
and wind attenuation. The forest canopy is represented as a one-
layer canopy whose energy balance is coupled to that of the below-
canopy snowpack via a canopy air space (i.e., the vegetation and
canopy air space temperatures and the canopy air space specific
humidity are additional model state variables). This is common in
land surface models, for example, CLASS (Bartlett et al., 2006),
JULES (Best et al., 2011), CLM (Lawrence et al., 2019), ISBA (Boone
et al., 2017), Noah-MP (Niu et al., 2011). The parametrizations of
canopy-mediated processes used in FSM2oshd are well-established
in literature: treatment of canopy snow interception and unloading
relies on the Hedstrom and Pomeroy (1998) model, transmission of
diffuse shortwave radiation and enhancement of longwave radiation
are dictated by bulk canopy transmissivity properties (as, e.g., in
Bewley et al., 2010), and turbulent exchange is treated with a bulk
aerodynamic scheme including a composite exp-log wind profile to
account for attenuation by the canopy (as, e.g., inMahat et al., 2013).
The representation of canopy structure, however, was adapted to
allow for more realistic dependencies of individual processes on
local canopy characteristics by using diversified, process-specific
canopy metrics, as described in Mazzotti et al. (2020a), Mazzotti
et al. (2020b); Mazzotti et al. (2021). This is especially important in
heterogeneous forests.

To characterize horizontal, vertical, local, and stand-scale
canopy features at each modeled location, canopy structure input
to FSM2oshd comprises canopy height (Hc), canopy cover fraction
(Fc), sky-view fraction (Vf), and leaf area index (LAI, parametrized
from Hc, Fc and maximum LAI values specific to forest type and
ecoregions). In particular, Mazzotti et al. (2020b) highlighted the
benefit of additionally providing a time-varying transmissivity for
direct shortwave radiation through the canopy (Td(t)) as input
FSM2oshd. Transmissivity time series are computed by an external
radiation transfer model that solves the process explicitly.
Incorporating these in FSM2oshd thus avoids the simplification
of the process representation in the model through a
parameterization.

Mazzotti et al. (2021) further showed that accurate process
representation at intermediate model resolution can be achieved
by using canopy descriptors and time-varying transmissivities
computed at high spatial resolution and subsequently averaged
(arithmetic mean) over the entire (forest fraction of each) grid
cell. Canopy structure input computed at ‘evaluation points’ with
10 m spacing is used as the basis for aggregating over the entire grid
cells. The canopy structure descriptors Fc and Hc are computed
from a high-resolution canopy height model (see below) over areas
of 5- and 50-m radii around each evaluation point as described in
Mazzotti et al. (2020a). Vf and Td(t) are calculated using the model
CanRad (Webster et al., 2023). CanRad calculates synthetic
hemispheric images at each evaluation point, by first determining
the height of the canopy horizon line around the evaluation point
from the canopy height model, and subsequently binarising a
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probability of Td(t) below the horizon line based on canopy
thickness across the hemisphere and tree crown volume density.
Vf is calculated using the methods described in Essery et al. (2008)
and Td(t) is calculated by overlaying the image with the position of
the complete annual solar track as in Jonas et al. (2020) andWebster
et al. (2020). The use of spatially averaged, time-varying
transmissivities is efficient because computationally expensive
transmissivity calculations at the evaluation points can be
performed offline, without compromising operational model run
times.

The national forest datasets used to derive canopy structure metrics
across the OSHD domain (Figure 6) are described in detail by Waser
et al. (2015), Waser et al. (2017). A canopy height model (Figure 2C)
was calculated at 1 m resolution based on LiDAR data covering all
Switzerland. The data consists of a nationwide acquisition from
2003 and an ongoing campaign (2017–2023), with supplementary
data from individual cantonal acquisitions. LiDAR point density
ranges from 1 to 30 pt/m2. The canopy height model is continually
updated as new lidar data is acquired. Partitioning of grid cells into open
and forest-covered fractions is based on a forest mask (Figure 2A), with
open areas influenced by the presence of forest included in the forest
fraction. Further datasets were used to include information on canopy
properties across the domain, which affect leaf area index and tree
crown densities. A nationwide forest mix rate dataset (Figure 2D)
calculated usingmachine learning and Sentinel 1 and 2 images served to
discriminate between deciduous and evergreen forest types (Waser
et al., 2017). Whether forest is needleleaf or broadleaf was determined
based on a combination of the Swiss forest ecoregions dataset (Figure
2B) (https://opendata.swiss/en/dataset/waldstandortsregionen), the
Copernicus forest type product (https://land.copernicus.eu/pan-
european/high-resolution-layers/forests), and elevation (Figure 2).

Species-specific LAI values are based on a product derived from
Sentinel-3 (https://land.copernicus.eu/global/products/lai).

2.1.4 Sub-grid parameterizations of
meteorological processes for larger-scale
modeling at the kilometer scale

FSM2oshd was advanced by integrating sub-grid parameterization
for unresolved processes for coarser-scale applications and downscaling
schemes for research applications at higher resolutions (Table 1).

2.1.4.1 Radiation
In case of coarser scale simulations (kilometer scale) when

radiation is not dynamically downscaled, the subgrid influence
of topography on radiative fluxes is described using a quasi-
analytical method presented in Löwe and Helbig (2012). First-
order terrain reflections, partial shading, and limited sky are
parameterized subgrid topographic impacts using the radiative
flux components. Only a subgrid sky view factor, spatial mean-
squared slope, and mean albedo, as well as the Sun elevation
angle, are needed in the grid cell of the coarse-scale model. If
only global radiation is available for the coarse grid cell, the
radiative flux components, shortwave direct and diffuse sky
radiation, are obtained from applying a decomposition model
at the coarse scale as described in Helbig et al. (2010). For the
subgrid sky view factor the formulation of Helbig and Löwe
(2014) was used, which describes the spatially averaged sky view
factor for a given grid cell over complex topography. The
parameterization is solely based on computationally cheap
terrain parameters, namely, the correlation length of sub-grid
topographic features and the mean-squared slope in the grid cell
of the coarse-scale model.

TABLE 1 Downscaling methods and parameterization options used in the OSHD model framework for different model chains and modeling purposes.

Operational version of FSM2oshd Coarse scale
applications

Research versions Conceptual
model ETI

Open fractions Forest fractions Open fractions Open fractions Open fractions

Horizontal grid
resolution

250 m 250 m ≥ 1,000 m 250–25 m ≥1,000 m

Wind Statistical downscaling by
Winstral et al. (2017)

Statistical downscaling by
Winstral et al. (2017)

Sub-grid parametrization by
Helbig et al. (2017)

Dynamical downscaling
using WindNinja or
HICAR (Reynolds et al.,
2023)

Statistical downscaling by
Winstral et al. (2017)

Radiation Dynamical downscaling
by Jonas et al. (2020)

Dynamical downscaling by
Jonas et al. (2020) and
Webster et al. (2020)

Sub-grid parametrization of
sky-view factor (Löwe and
Helbig, 2012 with Helbig and
Löwe, 2014)

Dynamical downscaling by
Jonas et al. (2020)

Dynamical downscaling
by Jonas et al. (2020)

Air temperature and
relative humidity

Linear Interpolation with
lapse rate

Linear Interpolation with
lapse rate

Linear Interpolation with lapse
rate

Dynamical downscaling
using HICAR (Reynolds
et al., 2023)

Linear Interpolation with
lapse rate

Snow cover fraction Sub-grid
parameterization of
seasonal fSCA by Helbig
et al. (2021b)

Subgrid parameterization
of simple hyperbolic
tangens model (Essery,
2015)

Sub-grid parameterization of
seasonal fSCA by Helbig et al.
(2021a)

Sub-grid parameterization
of seasonal fSCA by Helbig
et al. (2021a)

Sub-grid
parameterization of
seasonal fSCA by Helbig
et al. (2021b)

Wind-driven
redistribution of
snow and
precipitation

Sub-grid precipitation
adjustment (Griessinger
et al., 2016)

Canopy-dependent sub-
grid precipitation
adjustment (Mazzotti et al.,
2020a)

Sub-grid precipitation
adjustment (Griessinger et al.,
2016)

Snow transport scheme Sub-grid precipitation
adjustment (Griessinger
et al., 2016)
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2.1.4.2 Wind
For larger-scale applications when statistical downscaling of

wind is not suitable, the FSM2oshd model further allows for
parameterizing the sub-grid effect of terrain on the local wind
speeds (Helbig et al., 2017). The subgrid parameterization
describes terrain drag for surface wind speed based on
systematically analyzed wind fields over many synthetic
topographies. To describe the unresolved topographic impacts in
coarse-scale wind speed, the sub-grid parametrization of the sky
view fraction (Helbig and Löwe, 2014) was used as a topographic
sub-grid scaling parameter.

2.2 The conceptual model chain for snow
climatological modeling

The conceptual model chain was developed within the OSHD
model chain (Figure 1, OSHD_TICL) for climatological runs to
compare snow water resources in Switzerland of water years since
1998 at a horizontal resolution of 1,000 m (Figure 5). The conceptual
model is based on an efficient temperature-index (TI) snow model
with SWE and liquid water as main state variables and only requires
precipitation and temperature as forcing data, that is, available for a
longer historical period than the physics-based model chain. The
model is described in detail in Magnusson et al. (2014); Griessinger
et al. (2016). The conceptual models include a density model (HS-2-
SWE, see Section 3.1.1) for converting observed changes in snow
depth to solid precipitation fluxes and considering decreasing snow
depth due to compaction (Jonas et al., 2009). The temperature index
method is used to compute the daily amount of snowmelt occurring.

Our model framework uses an Ensemble Kalman filter (EnKF)
to update simulated melt rates and two model state variables (SWE
and liquid water content) based on observed snow water equivalents
computed from snow depth records.We run 100 ensemble members
for the point observation sites and the model grid, using interpolated

input data perturbed with spatially correlated errors (Magnusson
et al., 2014).

The model framework employs two conceptual snow models,
OSHD_TICL (Climatological Temperature Index Model) and
OSHD_ETI (Enhanced Temperature Index Model). In our
operational setting, we use OSHD_TICL, which compares SWE
of different years using the same data sources available since 1998
(Figure 7). We ensure maximum temporal constancy between
individual water years since 1998 by considering only stations
and data sources that feature data since 1998. Thus, OSHD_
TICL only uses gridded daily precipitation data (RHIRESD;
MeteoSwiss, 2019) and observed solid precipitation fluxes.
Further details on data assimilation procedures for precipitation
are provided in Section 3. To account for the sub-grid spatial
variability of snow, we use the seasonal and scale-independent
algorithm for the fraction of snow-covered area (fSCA)
developed by Helbig et al. (2015) (see Section 2.1.2).

We also developed the non-operational ETI model to improve
the representation of the precipitation phase. This model uses hourly
air temperature and precipitation data to discriminate between rain
and snowfall. Forcing data for air temperature, relative humidity,
and shortwave radiation is downscaled from respective fields from
COSMO (see Section 4).

A full data set for climatological runs, providing maps of snow
water equivalent and snow cover fraction from water year
1998–2022 from the OSHD_TICL model, is available at EnviDat.
doi:10.16904/envidat.401.

3 Data assimilation procedure

Within the OSHD model framework, different data assimilation
methods for precipitation exist which are used depending on the
model requirements of the physics-based and conceptual model
chains (Figure 1). The challenge of data assimilation within the

FIGURE 7
Main products from the conceptual model (TICL). Yearly evolution of Snow Water Equivalent (SWE) of different years (A). Map of the difference
between the SWE and the mean SWE for the years 1999-2022 (B).
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OSHD framework is to make optimal use of available point
observation of snow depth and air temperature, gridded products
of precipitation and air temperature, and analysis and forecast
products of the regional weather model. The data assimilation of
point scale snow depth data and gridded precipitation products
requires four steps of input and output processing (Figure 1): 1)
inferring daily snowfall estimates from snow depth observations at
stations, 2) providing an optimal first-guess solid precipitation field
from gridded air temperature and precipitation products, 3) an
assimilation step combining the first-guess solid precipitation fields
with the point estimates of solid precipitation, and 4) updating
calculated mass and energy fluxes with snow observations.

3.1 Inferring solid precipitation rates from
observed snow depths

In order to gain information on daily solid precipitation rates, we
convert daily snow depth records (HS) to snow water equivalent (SWE)
using a density model (HS-2-SWE) (step 1, Figure 1). This method uses
station data (Figure 8) from IMIS (Intercantonal Measurement and
Information System) snow monitoring networks including automatic
stations and manual observer data or from SwissMetNet (MeteoSwiss).
Furthermore, data from DWD (Deutscher Wetterdienst, German
national meteorological service), ZAMG (Zentralanstalt für
Meteorologie und Geodynamik, Austrian national meteorological
service) and MeteoFrance (French national meteorological service)
are operationally used for regions outside the Swiss border. The
station network consists of 444 stations measuring snow depths (HS
stations) and 256 stations measuring air temperature (TA-stations). For

the climatological runs the number of HS stations is reduced to
349 stations and TA-stations to 255 providing a full time-series of
quality-controlled data fromWY 1998 until today. Snow depth and air
temperature data are extracted at daily timesteps and are quality
checked.

We convert daily point measurements of snow depth to water
equivalent using a model based on the methods presented by
Martinec and Rango (1991). The adapted model describes the
accumulation and settling of the snowpack for each layer. The
density model applied for each layer has been calibrated based
on data from the over 10,000 snow profiles used in the study by
Jonas et al. (2009). We can compute snowfall and melt rates from the
increments/decrements in snow water equivalent. For an example of
the computed solid precipitation andmelt time series, see Figure 2 in
Magnusson et al. (2014). Note that melting and accumulation
cannot occur simultaneously with this simplified description of
the snowpack development. At the same time, this model only
requires daily snow depth records without the need for any
meteorological data.

3.2 Combining available gridded
precipitation products

To carry out the assimilation outlined in Step 3 of Figure 1,
obtaining the best possible prior estimate for solid precipitation on
the model grid is crucial (Step 2, Figure 1). To achieve this, we gather
data from various sources, including gridded daily precipitation
products (RhiresD) from MeteoSwiss and interpolated temperature
fields based on large station datasets. RhiresD provides a spatial

FIGURE 8
Monitoring network of stations measuring air temperature and snow depth.
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analysis of daily precipitation over the OSHD domain, utilizing data
from heated rain gauges, typically 430 within and 220 outside of
Switzerland daily. The daily temperature interpolation follows the
methods presented by Frei (2014) and employs data from over
300 stations covering most of the elevation range given by the OSHD
domain. We combine these daily products with hourly data from
COSMO 1 E to improve, for instance, precipitation phase
determination to obtain the best possible priors of daily snowfall
on the OSHD grid, which are further used in the optimal
interpolation step described below.

3.3 Optimal interpolation of solid
precipitation estimates at stations

The gauge network utilized in the gridded precipitation products
of MeteoSwiss has a limited representation of elevations above
1,200 m. Additional snow depth data from the snow observation
networks, particularly the IMIS network, are incorporated to
enhance the accuracy of solid precipitation information at high
altitudes. The first-guess or background fields of daily snowfall
obtained in the previous step (refer to Section 3.2) serve as the
basis for assimilating point solid precipitation rates inferred from
snow depth measurements (refer to Section 4.1). An optimal
interpolation scheme (OI) is employed for the assimilation,
efficiently updating the background field utilizing observations
(step3, Figure 1). The OI method considers apriori-defined

covariances between errors in the gridded input fields and point
observations, accounting for observation errors. We assume errors
in the precipitation input fields to be spatially correlated, while
observation errors are assumed to be spatially uncorrelated
(Magnusson et al., 2014). The optimal interpolation scheme
generates a best-guess daily solid precipitation field,
incorporating information from the snow depth stations.

To account for the effects of terrain on precipitation and snow
redistribution by wind and avalanches, distributed precipitation
multipliers are utilized as snow observations are commonly
conducted at flat field sites. To implement the sub-grid
precipitation adjustment, snow depths obtained from airborne
lidar acquisitions in the European Alps, as presented in
Grünewald and Lehning (2015), are employed. The scaling
method, following the iterative scaling approach proposed by
Vögeli et al. (2016), corrects for snow accumulation and is based
on slope calculations conducted at 25 m and then upscaled to a
resolution of 250 m. It should be noted that the scaling method is
only applied to solid precipitation.

In Figure 9, the impact of the assimilation procedure described
above on the accuracy of snow simulations at 45 measurement
locations spanning an elevation range of 1,195–2,690 m.a.s.l. from
2015-09-02 to 2022-8-01 is presented. The optimal interpolation
step leads to a reduction in the root-mean-squared error and bias for
all elevation bands. It should be noted that the error reduction is
smallest for the two highest altitude bands, likely due to lower station
density at these elevations and, therefore, fewer data available for
assimilation. In Figure 10, we present a comparison between the
time series of modelled snow depths with and without applying OI
technique, based on observations for Water Year (WY) 2022. To
ensure robust analysis, station data is aggregated for 500 m elevation
bands. The results clearly highlight the significant benefits of
employing optimal interpolation in operational snow modeling,
particularly in reducing errors associated with solid precipitation.
These findings further corroborate and validate the earlier
conclusions reported in studies conducted by Magnusson et al.
(2014) and Griessinger et al. (2019).

3.4 The Bias-Detecting Ensemble (step 4)

The OSHD-EB model chain employs the Bias-Detecting Ensemble
(BDE)method to enhance snow accumulation and depletion predictions
by updating mass and energy fluxes with snow observations (Winstral
et al., 2019). The BDE method evaluates the entire modeling chain to
identify potential biases in the meteorological driving data and snow
model, serving as an indirect approach for detecting biases in solid
precipitation and surface energy inputs to the model.

In the first step, the BDE algorithm determines whether
accumulation, melting or settling dominates the observed snow depth
development. An ensemble of simulations is then conducted and
evaluated against the snow observations, with precipitation
perturbations evaluated on snow days and only energy flux
perturbations on melt days. Daily history of the best-performing
biases based on simulated and measured snow depths at each site is
updated, with the assumption that these biases exhibit temporal
coherence. Daily values are back-averaged and spatially interpolated
to the modeling grid (Step 4, Figure 1).

FIGURE 9
Root-mean-squared-error and bias for snow water equivalent at
45 observation sites covering an altitude range from 1,195 to
2,690 m.a.s.l. for the open loop (FSM2oshd) and data assimilation run
using optimal interpolation (FSM2oshd + OI). The optimal
interpolation step reduces the errors in all elevation bands showing
the added value of this assimilation procedure to the operational
system.
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Griessinger et al. (2019) have demonstrated that the use of the
BDE method significantly improves the model performance of
runoff modeling results for energy balance snow simulations.

4 Downscaling methods of input data

The physics-based snow cover model requires total precipitation, air
temperature, incoming shortwave radiation, incoming longwave radiation,
wind velocity, air pressure and relative humidity at an hourly resolution
and spatial resolutions at the sub-kilometer scale. As COSMO1 data at a
horizontal resolution of 1 km is not resolving the effect of high-resolution
terrain on wind and radiation, statistical and dynamical downscaling
schemes were developed. The operationally used downscaling schemes for
radiation and wind are a promising alternative to subgrid
parameterization, which is primarily used for larger-scale applications
(Section 5). The operational version of FSMoshd applies downscaling
methods for meteorological parameters as detailed in Table 1.

4.1 Radiation

For model applications with target resolutions at the sub-
kilometer scale, radiation is dynamically downscaled using
topographical information from a 25-m resolution digital
elevation model accounting for topographic shading and the
inclination of the respective grid cell following Jonas et al.
(2020). To this end, the DEM is evaluated for each location of
interest and point in time to determine whether the Sun is visible
(weather permitting) or obscured by terrain. This enables calculating
incoming shortwave radiation within terrain from either the diffuse
component or the diffuse and direct components of the above-
terrain radiation. The local hemispherical sky view fraction is used to
constrain diffuse shortwave radiation and partition incoming
longwave radiation into the fractions sourced from the sky and
the terrain. In the operational setting, radiation per inclined surface
is re-upscaled from 25 m to the current target model resolution of
250 m (Figure 11).

FIGURE 10
Comparison of modelled snow depths at stations aggregated for 500 m elevation bands using FSMoshd with and without Optimal Interpolation (OI)
against measured snow depths for Water Year 2022 (WY 2022). The figure demonstrates the impact of OI on improving the accuracy of snow depth
estimates.
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4.2 Wind

For higher-resolution model applications (sub-kilometre
scale), two wind downscaling methods are available within the
OSHD model framework. The two statistical approaches (Helbig
et al., 2017; Winstral et al., 2017) aim to downscale gridded
coarse-scale wind data to finer grids using information from the
local topography. However, these two methods differ in the
required wind data and topographic parameters. In the
current operational model framework, the approach suggested
by Winstral et al. (2017) is used.

The statistical approach, Winstral et al. (2017) developed uses
local topographic information at a much higher resolution than
present in the forecast wind data to delineate the spatial
organization of biases in the forecast products. The local
terrain is statistically linked with observed forecast biases at
stations located at different terrain shading locations. The sub-
grid or high-resolution terrain information is determined from a
25 m resolution DEM using two established terrain parameters:
1) the topographic position indices (TPI), which describes
elevation relative to its surroundings, independent from wind
direction (Jenness 2006); 2) the terrain parameter Sx which is a
direction-dependent, slope-based assessment of topographic
shelter and exposure capable of differentiating such slopes
based on given wind directions. The Sx parameter has been
used successfully to distribute hourly observed wind speeds
across a modeling domain (Winstral and Marks, 2002;
Winstral et al., 2009; Winstral et al., 2013; Fiddes and Gruber,
2014). The resulting wind exposure metrics effectively segregated
high (ridges), moderate (slopes), and low wind speed sites

(valleys). An optimization scheme is applied to further
improve downscaled wind distributions, nudging the coarse-
scale wind distributions from COSMO data to better match
the observed wind speeds at stations (distributions and
variability). The optimization method requires a reasonable
number of wind stations in the domain and a new
optimization whenever new forecast data is used.

As an alternative approach, the statistical downscaling
scheme, described by Helbig et al. (2017), is available in the
OSHD model framework. This method can downscale coarse-
scale wind speeds from numerical weather prediction models to
points or high-resolution grids by describing the impact of the
surrounding resolved topography. Easily derived terrain
parameters using the mean squared slope for each fine-scale
grid and a parameter related to the Laplacian of terrain
elevations are used to calculate a local topographic
downscaling factor. Both terrain parameters relate to the
sheltering and exposure of grid cells. Depending on the two
terrain parameters, the downscaling scheme is based on millions
of simulated ARPS (Advanced Regional Prediction System) fine-
scale wind speed values on model topographies (Gaussian
random fields), depicting a wide range of realistic terrain
characteristics.

5 Discussion, conclusion and outlook

We have presented a multi-modular model framework for
modeling snow cover dynamics. The model framework was
developed for the purpose of operational snow hydrological

FIGURE 11
Incoming shortwave radiation obtained from COSMO and dynamically downscaled within the OSHDmodel framework applying the HPEval model
(Jonas et al., 2020).
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modeling in Switzerland and is also used for providing daily new
snow forecasts for avalanche warning and weather predictions.
The model framework and associated data have been utilized in a
variety of research applications. For instance, they have been
used to study droughts (Toreti et al., 2023), project future snow
water resources (Lüthi et al., 2019) and their hydrological
implications (Floriancic et al., 2020), and project future rain-
on-snow events (Schirmer et al., 2022). Additionally, they have
been employed in studies examining the impact of snow cover
dynamics on catchment hydrology (Freudiger et al., 2016;
Griessinger et al., 2016; Jenicek et al., 2016; Arnoux et al.,
2021) and mountain ecosystems (Xie et al., 2018; Schano
et al., 2021), as well as the importance of snow melt dynamics
in triggering cascading processes in high-alpine terrain under
changing climate conditions (https://ccamm.slf.ch/de/cascading-
processes.html).

The operational snow hydrological model framework
consists of models of different complexity, which are
dedicated to different modeling strategies and purposes. The
physics-based model chain allows to capture aspect related
snowmelt differences as well as high spatio-temporal melt
dynamics during extreme weather situations such as rain-on
snow or strong wind events. However, the conceptual model
chain is still required for climatological runs to compare snow
water resources of the last decades when atmospheric forcing
data was not available. While the OSHD model framework makes
optimal use of the exceptional data availability in Switzerland, the
OSHD developments also accounted for the challenges involved
with the large fraction of high-alpine terrain in Switzerland
inducing a high complexity of snow-atmosphere interactions.
We have thus demonstrated strategies for data assimilation,
downscaling techniques and sub-grid parametrizations of
relevant processes at the snow-atmosphere interface in order
to capture relevant snow processes at the catchment and ridge
scale. At the same time the model is designed to optimize
computational efficiency to meet the requirements of an
operational snow hydrological service in an alpine country.

The FSMoshd model is a leading-edge snow hydrological model
that accurately captures forest snow processes, as demonstrated in
recent studies (Mazzotti et al., 2020a; Mazzotti et al., 2023).
However, there is still room for improvement in the model’s
representation of slope and ridge-scale snow processes, such as
preferential deposition of snowfall, snow drift, and avalanching. To
address this, we are coupling the FSMoshd model with a new, high-
resolution variant of the intermediate complexity atmospheric
research model HICAR (Gutmann et al., 2016; Kruyt et al., 2022;
Reynolds et al., 2023).

By incorporating the atmospheric model, we can better
represent the interaction between ridge-scale terrain-induced
winds, the advection of falling snow particles, and local-scale
micro-physical processes. This coupling will allow us to account
for the changing snow coverage and its impact on near-surface air
temperatures. Moreover, recent advances in atmospheric
measurement techniques (Haugeneder et al., 2022) have
provided valuable insights into the dynamics of heat transport
processes over patchy snow covers, which we will integrate into
our model system to parameterize the effect of heat advection
processes. In addition, coupling the model with a snow transport

model will enable us to explicitly account for snow redistribution
processes by wind and avalanches.

Physics-based models for snow hydrological modeling
heavily rely on accurate meteorological input data. However,
due to the inherent uncertainty in weather forecasting, ensemble
weather forecasting has become a promising development for
snow hydrological modeling. By providing probabilistic forecasts
through ensemble simulations, decision-makers can gain
valuable insights and make informed decisions based on the
added value of the OSHD products (Buizza, 2008; Ramos
et al., 2013). These approaches have also been proven to have
scientific applications (Dumont et al., 2020). To fully account for
all sources of uncertainty in snowpack modeling, it is essential to
use meteorological ensemble input in combination with an
ensemble of snowpack models (Vernay et al., 2015; Lafaysse
et al., 2017; Aalstad et al., 2018; Kim et al., 2019). Integrating
multiple sources of uncertainty can significantly improve the
accuracy and reliability of snow hydrological modeling (Raleigh
et al., 2015).

The model system can significantly benefit from the latest
advancements in remote sensing products that provide high-
resolution data on snow coverage, snow wetness, snow depths,
and forest structures (Dozier et al., 2016; Lievens et al., 2019;
Lievens et al., 2022). With the integration of data assimilation
methods, the model system can effectively propagate information
into underserved areas, particularly with particle filter-based
approaches (Cluzet et al., 2022; Odry et al., 2022), by
incorporating various measurement types, such as gauges,
radars, satellites, and snow observations (Lundquist et al.,
2019). This integration improves the accuracy of data
assimilation procedures and enhances the representation of
forest snow processes. Moreover, it allows for precise spatial
validation of the model results, particularly crucial in
mountainous terrains. Overall, the combination of remote
sensing and data assimilation can steadily improve the model
system.
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